

Department of Environmental Conservation

Water chestnut in New York State

Northeast aquatic Plant Management Society Plant Camp September 14, 2022

Steven Pearson, Research Scientist I, New York State Department of Environmental Conservation

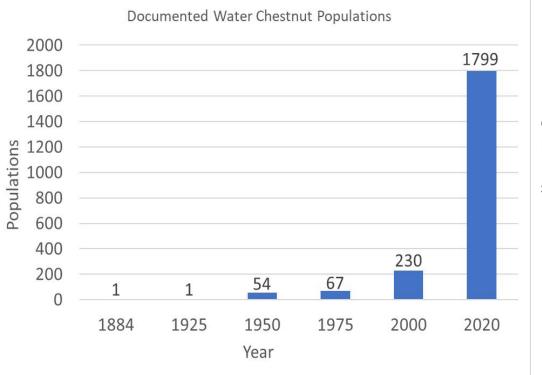
Water chestnut biology

- Annual, Rooted Floating Plant
 - Rosette surrounds central stem
 - Inflated petioles enable floating
 - Breaches surface
 - Late May to Mid June
- Fecundity
 - Up to 20 seeds/plant
 - Seeds have four sharp points
 - Mature fruits drop and sink
 - Floating seeds are no longer viable
 - Mature by late July
 - Regional and weather dependent
- Seed longevity
 - Up to 12 years

Water chestnut ecology

- Grows in littoral zone
 - <5 m depth
 - Prefers 0.3m 2m
- Forms dense monocultures
 - Up to 96 rosettes/m²
 - Alters aquatic community
 - Shades understory
 - Alters submersed plant and animal communities
 - Significant decreases in dissolved oxygen
 - Measured near 0 on Lake Champlain
 - Outcompetes floating plants

Water Chestnut introduction to New York

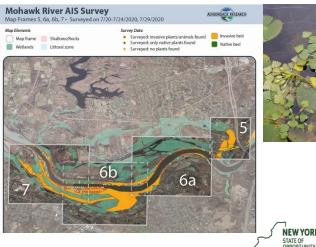

- First N. America plantings
 - Cambridge Botanical Gardens ~1877
- First escaped report in NY
 - 1884, Scotia, NY, Collins Lake with Mohawk drainage
 - Unknown vector
- Introduction and dispersal
 - Water garden escapee
 - Floating dispersal
 - Waterfowl
- Regulation
 - Part 575 as prohibited
 - No possession or transport

Water chestnut spread and distribution

Spread over time

Introduced 1884 Initial spread along Hudson River, then Mohawk River By 2020 most NY counties have populations Improved records since 2000?

- iMap mapping challenge
- Well established PRISM networks



Understanding the problem

iMap Invasives

- Tracking reports
- 2 portals
 - Public
 - Managers
- Hudson/Mohawk Rivers
- Mapping efforts
- Stakeholder taskforce
 PRISMs
- Working regionally
- Engaging stakeholders

Water chestnut management strategies

- Long term commitment
 - Seed longevity = 12 yrs
 - Downstream dispersal
- Dependent on
 - Infestation size
- Waterbody characteristics
 - Riverine vs. pond/lake
 - T&E species
 - Beneficial uses
 - Source water protection
 - Recreation

Water chestnut management strategies: Manual Removals

- Advantages
 - Widely practiced
 - Small scale removals
 - Limited impact to other plants
 - Can involve volunteers
 - Follow up to mechanical
 - Continued maintenance
- Disadvantages
 - Labor intensive
 - Not good for large infestations
 - Not good for spotty infestations
 - Surveying/removal of scattered plants
 - Higher level plant ID

Photos: Steven Pearson, Kate Monacelli, Fred Dunlap

Water chestnut management strategies: Mechanical Harvester

- Advantages
 - Large infestations
 - Repeated mechanical harvesting
- Disadvantages
 - Depth limitations ~3 ft
 - Fragmentation of plants
 - Limited access points
 - Not selective
 - Increased cost
 - Best Practice
 - Leave a ring of WC
 - Harvest interior of bed
 - Harvest outer ring last
 - Manual harvest follow up
 - >25% density cover

Water chestnut management strategies: Mechanical Harvester – Small

- Advantages
 - Small infestations
 - Area maintenance
 - Shallow water
 - Remote controlled
- Disadvantages
 - Fragmentation of plants
 - Not selective
 - Protected waters

https://weedersdigest.com/waterbug-aquatic-weed-harvester-remote-controlled-solar-battery-powered/

Photos: Steven Pearson, Fred Dunlap

Water chestnut management strategies:Foliar ApplicationsChemical Control

- Advantages
 - Large infestations
 - Selective application
 - Area maintenan*c*e
 - Shallow water
- Disadvantages
 - Permitting
 - Repeated applications
 - Dissolved Oxygen Crash
 - Potential impacts to natives
- Herbicides used
- Florpyrauxifen-benzyl,2,4-D, imazomax and glyphosate

Photos: Steven Pearson, Fred Dunlap

Water chestnut management strategies: Dredging

- Advantages
 - Sediment removal
 - Reduces seed bank
 - Reduces nutrient loads
 - Increases water depth
- Disadvantages
- Non-selective
- Alters water flow while occurring
- Releases sediments/stored pollutants
- High costs
- Permitting?

Photos: https://dredgewire.com/nys-canals-has-acquired-a-watermaster-aquamec-ltd-amphibious-dredge-amultipurpose-vessel-that-helps-churn-and-move-ice-downstream-to-reduce-the-risk-of-spring-flooding/

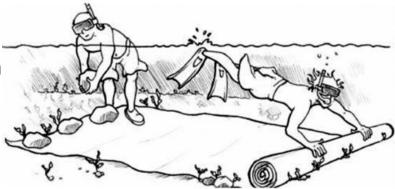
Water chestnut management strategies: Mechanical Rake (aka. Hydroraking(

- Advantages
- Large infestations
- Shallower water than harvester
- Removes stumps and debris
- Disadvantages
- Fragmentation of plants
- Limited access points
- Not selective
- Increased cost

Photos: http://www.hopatconglakeregionalnews.com/index.php/news/lake-information/1002-lake-hopatcong-foundationprovides-informative-update-to-the-hopatcong-borough-council

Water chestnut management strategies: Drawdown

- Timing is important
 - Winter: Freeze seeds
 - Summer: Prevent seeds
- Advantages
 - Low cost
 - Deferred maintenance
 - Structural repair
 - Shoreline trash
- Disadvantages
 - Non-selective
 - Alters downstream water flow
 - Requires water control structure



Photos: Thomas Copolla, https://mohawk.substack.com/p/well-field-woes

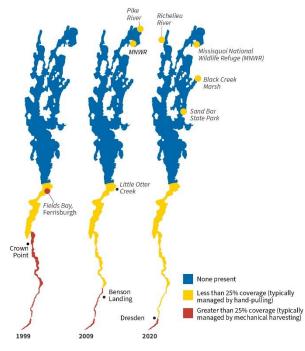
Water chestnut management strategies: Benthic Barriers

- Advantages
 - Smothers rooted plants
 - Prevents seed germination
 - Maintain cleared areas
- Disadvantages
 - Non-selective
 - Seasonal maintenance
 - Annual maintenance
 - Small areas
 - Difficult installation
 - Costly installation
 - Barrier removal

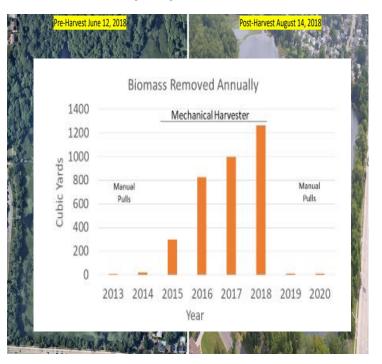
Photos: Chris Cooley, Diet for a Small Lake

Water chestnut management strategies: Biological Control

- Long term goal
 - Development of speciesspecific biocontrol
 - Galerucella birmanica
- Advantages
 - Low cost to apply
 - Potential long term/widespread control
- Disadvantages
 - Not-yet available
 - High cost to develop
 - Introduces a non-native species
 - Site specific success
 - Dependent on local ecology

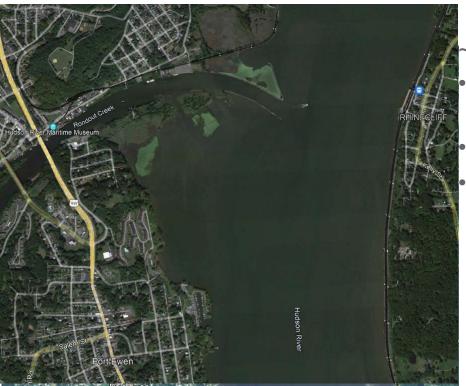


Photos: Wade Simmons



Ongoing management greatly decreases abundance in large populations - Lakes

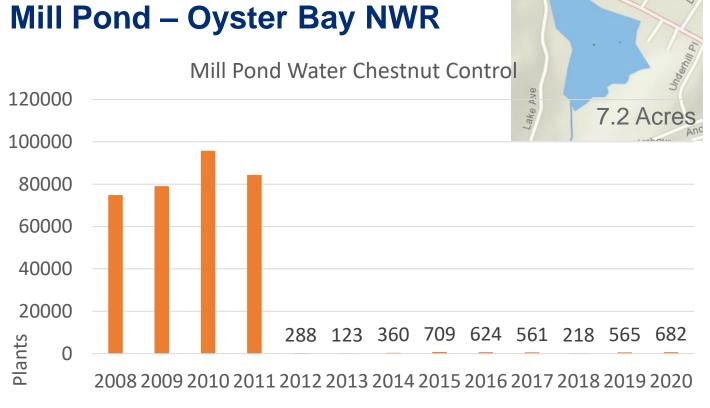
Lake Champlain



Massapequa Reservoir

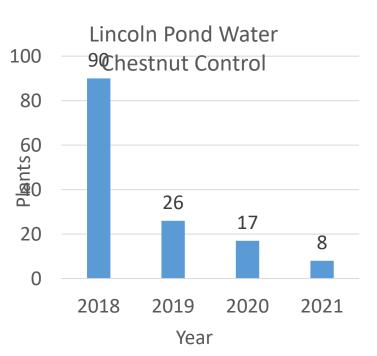
Ongoing management greatly decreases abundance in large populations - Rivers

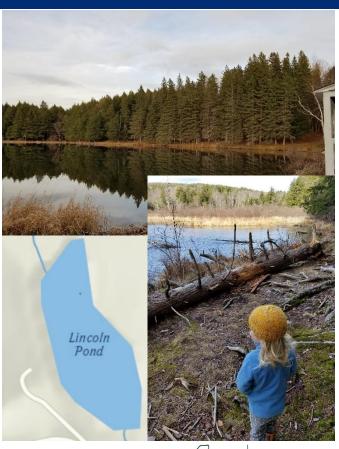
September 2019

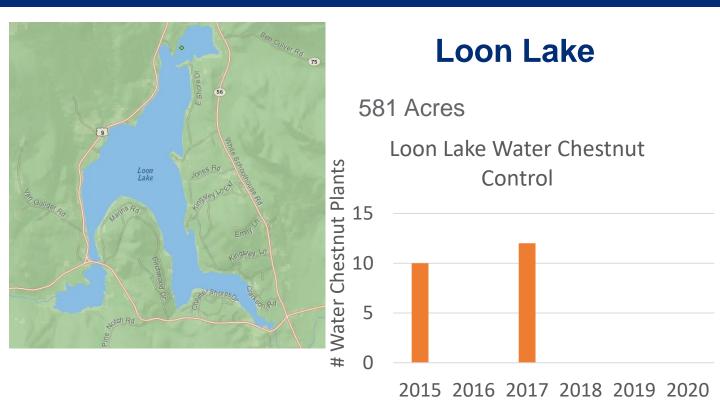


Hudson River: Town of Esopus ~80 acre WC Patch

- Purchased weed harvester (2011)
 - Volunteer operators
- Town staff for support
- Annual hours
 - 116-145

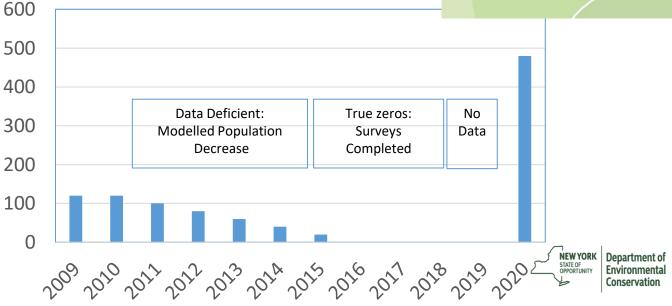

Populations managed to annual maintenance and perceived eradication Loon Lake Small ongoing control projects Mill Pond – Oyster Bay Lincoln Pond Lincoln Pond Lake Tahgkanic **Cautionary Tails** Mill Pond - Oyster Bay Loon Lake Swan Pond Swan Pond Lake Tahgkanic NEW YORK Department of STATE OF Fnvironmenta OPPORTUNITY Conservation




Lincoln Pond – Huyck Preserve

10 acres

Year

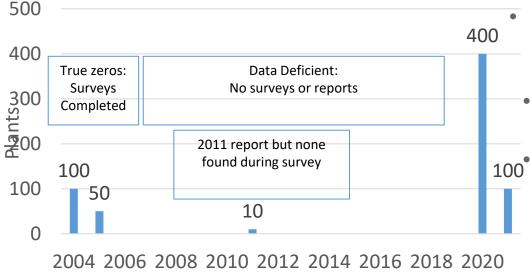

Swan Pond

57 Acres

• 2019 – No Survey

Swan Pond Water Chestnut Control

Lake Tahgkanic – Lake Tahgkanic State Park


168 Acre Lake

- History of WC
- Limited survey after treatment
- By 2020 likely present for several years
 - Widespread in E. Bay of lake
 - 2020 pull reduced abundance

Department of Environmental Conservation

Lake Taghkanic Water Chestnut Control

Year

Conclusion

- Water chestnut can be managed
 - Eradicated in some locations
 - Annual maintenance
- Long term monitoring is required to prevent population re-emergence
 - Annual survey
 - Annual control as needed
 - Survey and control before seeds mature
 - Cannot skip a year or two
 - Population reemergence can be rapid

Thank you!

Steven Pearson Research Scientist I Bureau of Invasive Species and Ecosystem Health Invasive Species Coordination Section Steven.pearson@dec.ny.gov

